Graphical relationship between \(f', f'', \) and \(f''' \)

85 33. The graph of the **derivative** of \(f \) is shown in the figure above. Which of the following could be the graph of \(f' \)?

(A) ![Graph A]
(B) ![Graph B]
(C) ![Graph C]
(D) ![Graph D]
(E) ![Graph E]

69 16. If \(y \) is a function \(x \) such that \(y' > 0 \) for all \(x \) and \(y'' < 0 \) for all \(x \), which of the following could be part of the graph of \(y = f(x) \)?

(A) ![Graph A (69)]
(B) ![Graph B (69)]
(C) ![Graph C (69)]
(D) ![Graph D (69)]
(E) ![Graph E (69)]
17. The graph of a twice-differentiable function f is shown in the figure above. Which of the following is true?

(A) $f(1) < f'(1) < f''(1)$

(B) $f(1) < f''(1) < f'(1)$

(C) $f'(1) < f(1) < f''(1)$

(D) $f''(1) < f(1) < f'(1)$

(E) $f''(1) < f'(1) < f(1)$

20. The graph of $y = f(x)$ on the closed interval $[2, 7]$ is shown above. How many points of inflection does this graph have on this interval?

(A) One (B) Two (C) Three (D) Four (E) Five

81. Let f be the function given by $f(x) = |x|$. Which of the following statements about f are true?

I. f is continuous at $x = 0$.

II. f is differentiable at $x = 0$.

III. f has an absolute minimum at $x = 0$.

(A) I only (B) II only (C) III only (D) I and III only (E) II and III only
8. The graph of \(y = f(x) \) is shown in the figure above. On which of the following intervals are \(\frac{dy}{dx} > 0 \) and \(\frac{d^2y}{dx^2} < 0 \)?

- I. \(a < x < b \)
- II. \(b < x < c \)
- III. \(c < x < d \)

(A) I only (B) II only (C) III only (D) I and II (E) II and III

9. Which of the following pairs of graphs could represent the graph of a function and the graph of its derivative?

I. \[\begin{align*}
\text{Graph of } y = f(x) & \quad \frac{dy}{dx} > 0 \\
\text{Graph of } y = f'(x) & \quad \frac{d^2y}{dx^2} < 0
\end{align*} \]

II. \[\begin{align*}
\text{Graph of } y = f(x) & \quad \frac{dy}{dx} < 0 \\
\text{Graph of } y = f'(x) & \quad \frac{d^2y}{dx^2} > 0
\end{align*} \]

III. \[\begin{align*}
\text{Graph of } y = f(x) & \quad \frac{dy}{dx} > 0 \\
\text{Graph of } y = f'(x) & \quad \frac{d^2y}{dx^2} > 0
\end{align*} \]

(A) I only (B) II only (C) III only (D) I and III (E) II and III
43. Let \(f \) be a function that is continuous on the closed interval \([-2, 3]\) such that \(f'(0) \) does not exist, \(f''(2) = 0 \), and \(f''(x) < 0 \) for all \(x \) except \(x = 0 \). Which of the following could be the graph of \(f' \)?

23. The graph of \(f \) is shown in the figure above. Which of the following could be the graph of the derivative of \(f' \)?
13. The graph of the function f shown in the figure above has a vertical tangent at the point $(2, 0)$ and horizontal tangents at the points $(1, -1)$ and $(3, 1)$. For what values of x, $-2 < x < 4$, is f not differentiable?

(A) 0 only (B) 0 and 2 only (C) 1 and 3 only (D) 0, 1, and 3 only (E) 0, 1, 2, and 3

16. If y is a function of x, such that $y' > 0$ for all x and $y'' < 0$ for all x, which of the following could be part of the graph of $y = f(x)$?

(A) Y (B) Y (C) Y (D) Y (E) Y

19. Let f be the function defined by $f(x) = \begin{cases} x^3 & \text{for } x \leq 0, \\ x & \text{for } x > 0. \end{cases}$ Which of the following statements about f is true?

(A) f is an odd function.
(B) f is discontinuous at $x = 0$.
(C) f has a relative maximum.
(D) $f'(0) = 0$
(E) $f'(x) > 0$ for $x \neq 0$
11. The graph of the derivative of \(f \) is shown in the figure above. Which of the following could be the graph of \(f \)?

(A) \[\begin{array}{c}
 y \\
 -2 \quad 0 \quad 2
\end{array} \]

(B) \[\begin{array}{c}
 y \\
 -2 \quad 0 \quad 2
\end{array} \]

(C) \[\begin{array}{c}
 y \\
 -2 \quad 0 \quad 2
\end{array} \]

(D) \[\begin{array}{c}
 y \\
 -2 \quad 0 \quad 2
\end{array} \]

(E) \[\begin{array}{c}
 y \\
 -2 \quad 0 \quad 2
\end{array} \]

76. The graph of a function \(f \) is shown above. Which of the following statements about \(f \) is false?

(A) \(f \) is continuous at \(x = a \).

(B) \(f \) has a relative maximum at \(x = a \).

(C) \(x = a \) is in the domain of \(f \).

(D) \(\lim_{x \to a^+} f(x) \) is equal to \(\lim_{x \to a} f(x) \).

(E) \(\lim_{x \to a} f(x) \) exists.
The graphs of the derivatives of the functions \(f, g, \) and \(h \) are shown above. Which of the functions \(f, g, \) or \(h \) have a relative maximum on the open interval \(a < x < b \)?

(A) \(f \) only
(B) \(g \) only
(C) \(h \) only
(D) \(f \) and \(g \) only
(E) \(f, g, \) and \(h \)

The graph of \(y = h(x) \) is shown above. Which of the following could be the graph of \(y = h'(x) \)?

(A)
(B)
(C)
(D)
(E)